

First Year Evaluation of CTS between New England and New York

Pallas LeeVanSchaick ISO-NE External Market Monitor NYISO Market Monitoring Unit Potomac Economics, Ltd.

Presented to: Joint ISO-NE/NYISO Stakeholder Meeting April 20, 2017

Introduction and Summary

- Potomac Economics has performed a study assessing:
 - CTS, which currently makes interchange adjustments based on: (i) forecasted price differences and (ii) participant offers; and
 - Tie Optimization ("TO"), which would make interchange adjustments based only on forecasted price differences.
- After Year 1 of CTS, this study has evaluated the tariff-defined trigger that could lead the RTOs to move to TO after Year 2.
- In Year 1, we estimate that TO would have increased production costs by \$0.3 million because of forecast errors.
 - \checkmark The trigger for moving to TO would not have been satisfied.
 - We discuss the forecast errors and potential improvements the RTOs could explore to reduce them.

Overview of Presentation

- Background
- Description of Model
- Summary of Results
- Discussion of Forecasting Issues
- Conclusions
- Appendix

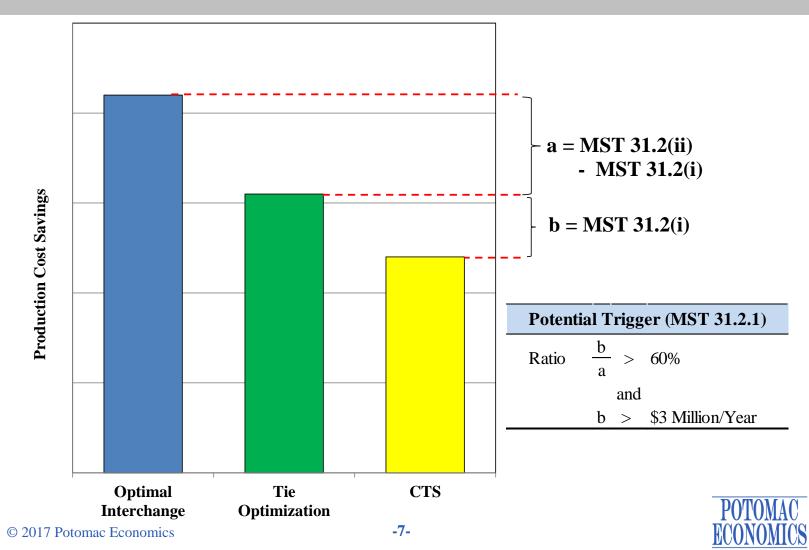
Background

Background

- In 2011, Stakeholders in the ISO-NE and NYISO markets considered options for improving interchange between markets
- Two options emerged:
 - ✓ Tie Optimization
 - ✓ Coordinated Transaction Scheduling
- Simulations performed at the time found that TO would perform better than CTS.
 - ✓ TO simulations resulted in \$3.4 million/year (35 percent) of additional production cost savings
 - \checkmark However, it is difficult to simulate trading behavior under CTS
- Ultimately, stakeholders adopted CTS, but the filing included a process for switching to TO, if warranted

© 2017 Potomac Economics

-5-



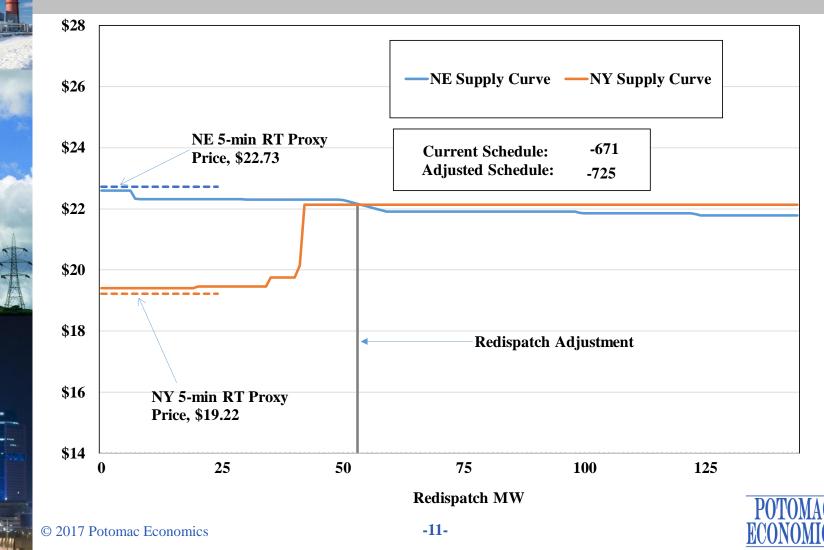
Background

- CTS implemented on December 15, 2015
- NYISO tariff requires:
 - ✓ MMU perform evaluation after first year & after second year
 - ✓ MMU shall estimate:
 - 31.2(i) actual bid production cost savings...that would have occurred had the ISOs had an infinite number of zero bids in the CTS process... ("Tie Optimization Interchange"); and
 - 31.2(ii) actual bid production cost savings...that would have occurred had the ISOs had an infinite number of zero bids in the CTS process, but utilizing actual real-time prices from each market rather than the forecasted prices that were used in the CTS process ("**Optimal Interchange**").
 - ✓ Second year evaluation triggers potential market design change

Background Illustration of Potential Triggers

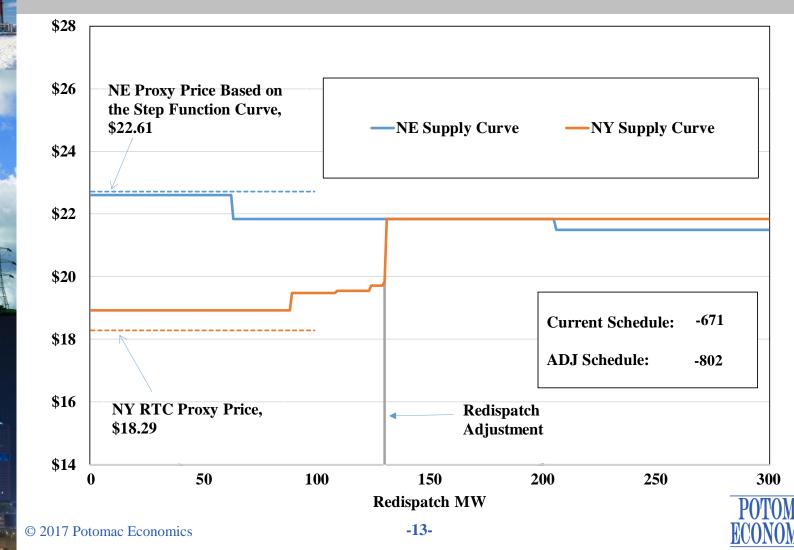
Description of Simulation Model

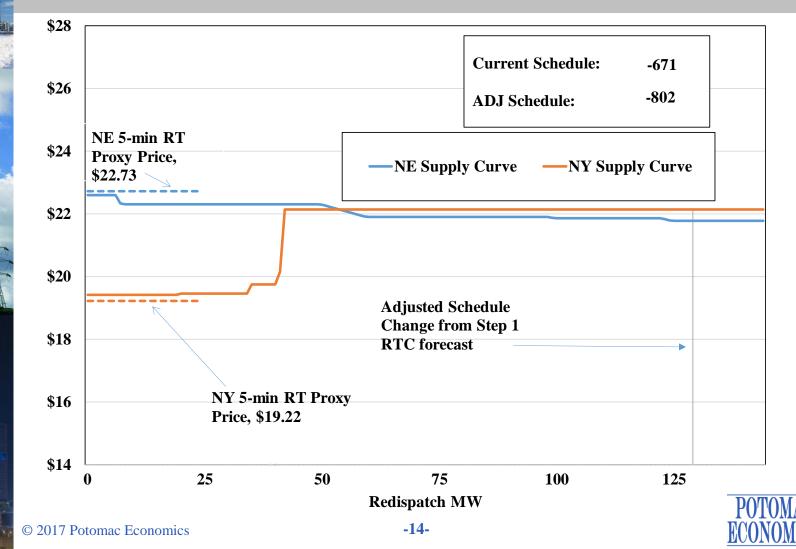
Description of the Simulation Model


- Adjusts interchange toward higher-priced market until:
 - ✓ Interface is fully loaded;
 - ✓ Internal constraints prevent additional re-dispatch;
 - ✓ Adjustment reaches 200 MW; or
 - \checkmark Prices at the border equalize.
- Supply curves constructed for each market:
 - ✓ Based on IE offers from online and offline 10-minute resources;
 - ✓ Respects active transmission constraints:
 - Units with low congestion component eligible to go down only,
 - Units with high congestion component eligible to go up only
 - ✓ Ignores ancillary services requirements and ramp limits.

Description of the Simulation Model Optimal Interchange Case

- Interchange adjustments every 5 minutes toward the optimal level
- Up/down supply curves constructed from eligible resources based on NYISO RTD and ISO-NE LMPc results
- Bid production cost savings are always non-negative
- The following figure illustrates this for a particular interval (August 1 at 9:05)


Description of the Simulation Model Illustration of Optimal Interchange Case

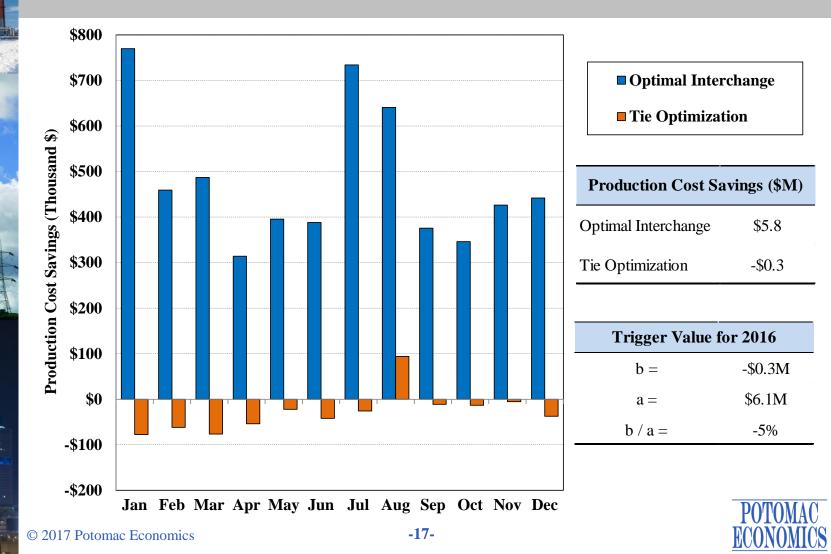

Description of the Simulation Model Tie Optimization Case

- Step 1: Sets interchange every 15 minutes to forecast optimum.
 - $\checkmark\,$ NYISO supply curves based on RTC "binding" intervals
 - ✓ ISO-NE supply curves based on step-function evaluated by RTC:
 - ISO-NE creates a 7-point piecewise linear supply curve; and
 - NYISO converts this to a 7-step function for the RTC evaluation.
- Step 2: Calculates bid production cost savings resulting from interchange that is set in Step 1.
 - Reflects interchange ramp profile (e.g., if Step 1 is +200 MW at :30, Step 2 assumes +100 MW at :30 and +200 MW at :35/:40)
 - ✓ NYISO and ISO-NE supply curves based on 5-minute results
 - \checkmark Production cost savings are not necessarily positive
- This is illustrated in the following two slides.

Description of Simulation Model Illustration of Tie Optimization Step 1

Description of Simulation Model Illustration of Tie Optimization Step 2

Summary of Results



Summary of Simulation Results for 2016

- The figure shows monthly production cost savings for Optimal Interchange ("OI") and Tie Optimization ("TO") cases.
 - ✓ We estimate OI would reduce regional bid production costs by \$5.8 million, while TO would *increase* them by \$0.3 million.
- The table summarizes the results comparing the interchange adjustments in the two cases:
 - ✓ No Adjustment: No interchange adjustments for both TO and OI.
 - ✓ Same Adjustment: Same interchange adjustments for TO and OI.
 - Over-Adjustment: (a) TO over-adjusts the interchange in the same direction as OI, or (b) TO adjusts but OI does not.
 - ✓ Under-Adjustment: TO under-adjusts the interchange in the same direction as OI.
 - Adjustment in Wrong Direction: TO adjusts in the opposite direction as OI.

Estimated Production Cost Savings By Month, 2016

Estimated Production Cost Savings By Category of Adjustment, 2016

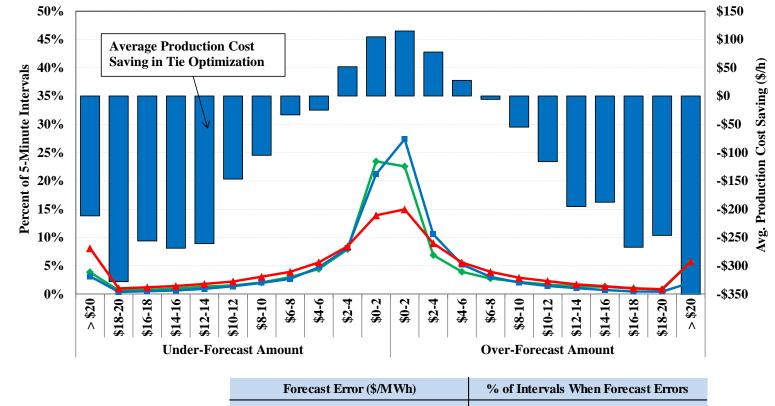
		Production Cos			
Category of Adjustment		Tie Optimization (TO)	Optimal Interchange (OI)	% of 5-Minute Intervals	
No Adjustment				20%	
Same Adjustment		\$0.7	\$0.7	6%	
Over Adjustment	Same Direction as OI	-\$0.1	\$0.1	10%	
	No OI Adjustment	-\$0.5		9%	
Under Adjustment	Same Direction as OI	\$0.8	\$1.7	18%	
I	NO TO Adjustment		\$2.3	24%	
Adjustment in Wrong Direction		-\$1.3	\$1.0	13%	
Total		-\$0.3	\$5.8	100%	

© 2017 Potomac Economics

Discussion of Forecasting Issues

Discussion of Forecasting Issues

- The next figure summarizes the distribution of forecast errors.
 - ✓ Green: Distribution of NE-side forecast error
 - = (a) Forecast using 7-step supply curve (b) LMPc price
 - ✓ Blue: Distribution of NY-side forecast error
 - = (c) RTC price (d) RTD price
 - ✓ Red: Distribution of forecast error differential
 - = [(c) (a)] [(d) (b)]. When this is positive, the values is shown with the "Over-Forecast Amount" group. When this is negative, the values are shown with the "Under-Forecast Amount" group.
 - The bars show the average production cost savings in our TO simulations for each category.


Discussion of Forecasting Issues

- ISO-NE forecast of the border price was \$0.81/MWh *higher* on average than the actual price in 2016,
 - ✓ NYISO forecast was \$1.33/MWh *lower* than the actual price.
 - ✓ The forecasts would have led TO to systematically over-schedule toward ISO-NE.
- Forecast errors by each ISO were widely distributed, exceeding \$10/MWh in 13 to 21 percent of intervals.
- The forecast error of the border price differential (the red line) exceeded \$10/MWh in nearly 30 percent of intervals, leading to larger inefficiency of interchange scheduling.
 - ✓ The production cost savings from TO were generally negative when forecast errors were greater than \$6/MWh.

Forecast Errors and Production Cost Savings Shortfalls

	Forecast Error (\$/MWh)				% of Intervals When Forecast Errors	
	MEAN	MIN	MAX	STD	Within \$10/MWh	Beyond \$20/MWh
NE Forecast	\$0.81	-\$1,629	\$1,150	\$33	79%	9%
	-\$1.33	-\$2,344	\$2,125	\$33	87%	5%
Border Differential	-\$2.14	-\$2,401	\$3,660	\$47	71%	14%
E			22			

POTOMAC ECONOMICS

© 2017 Potomac Economics

................

Conclusions

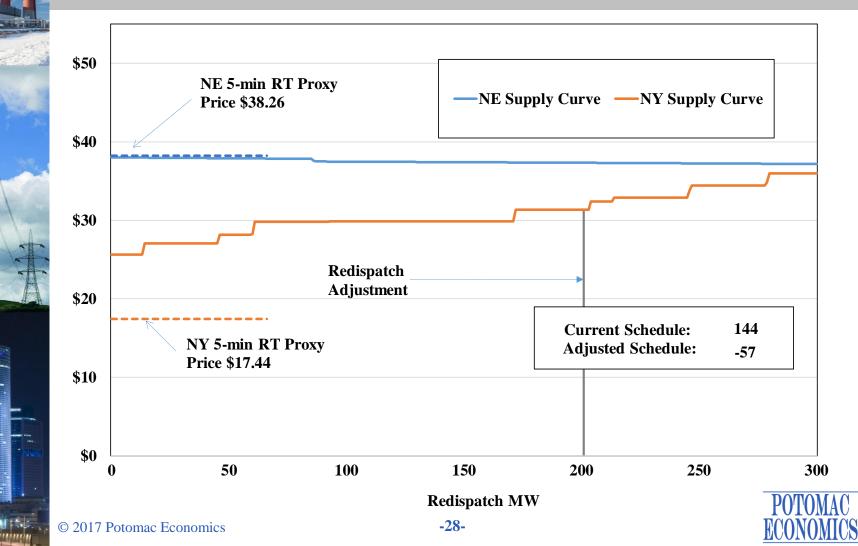
Conclusions

- Based on our simulations for Year 1:
 - Optimal Interchange would have resulted in a \$5.8 million decrease in regional production costs
 - ✓ Tie Optimization would have yielded a \$0.3 million *increase*.
- Although the study of Year 1 is for advisory purposes, the results are well below the tariff thresholds that would trigger an assessment by the ISOs.
- Forecast errors would likely have led Tie Optimization to adjust the interchange to a suboptimal level or even in the wrong direction relatively frequently.
 - Regardless of whether the ISOs use Tie Optimization or CTS, these results highlight the need to enhance forecasting tools.
 - Accurate forecasting is also important for efficient commitment of fast start units and external transactions at other interfaces.

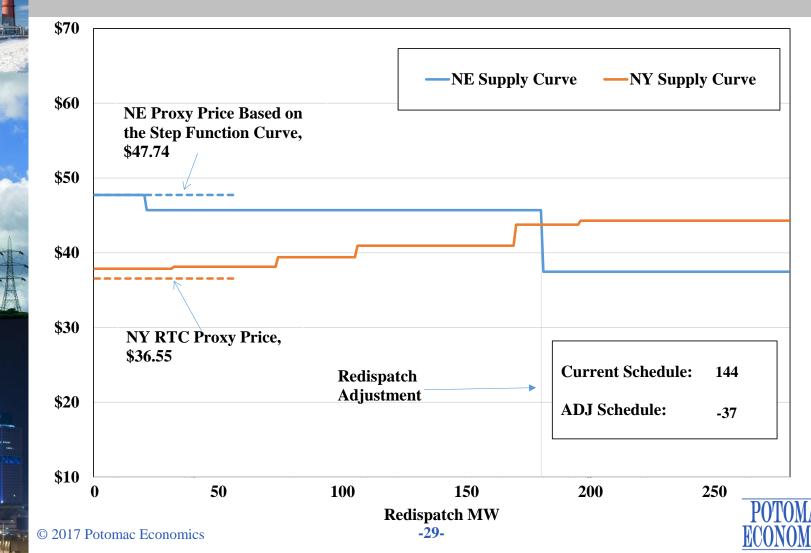
Conclusions

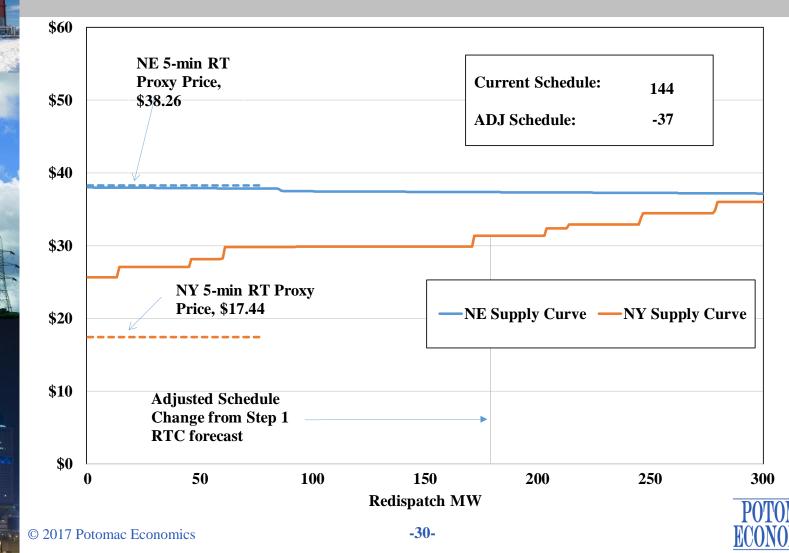
- We have previously identified factors that contribute to poor forecasting in the ISO-NE and NYISO markets, including:
 - Inconsistency between the scheduling models and dispatch models related to the timing of external interchange ramp
 - ✓ NYISO uses a 7-step approximation of ISO-NE's supply function
 - \checkmark Load forecast and wind forecast errors in both markets
 - Other factors that lead to transient real-time price volatility in the NYISO market (e.g., loop flows)
- See 2015 NYISO SOM Report at pages 54-59, 94-97 and 2015 ISO-NE Annual Report at pages 75-85.

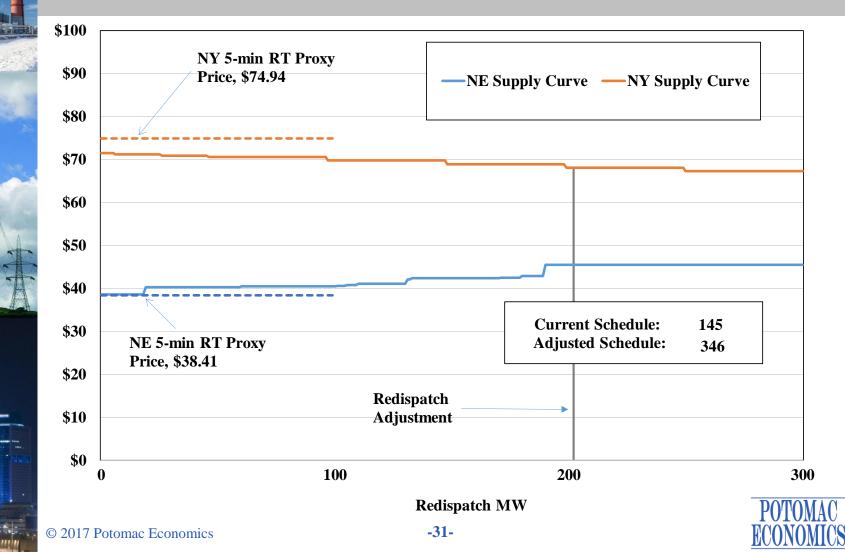
Appendix

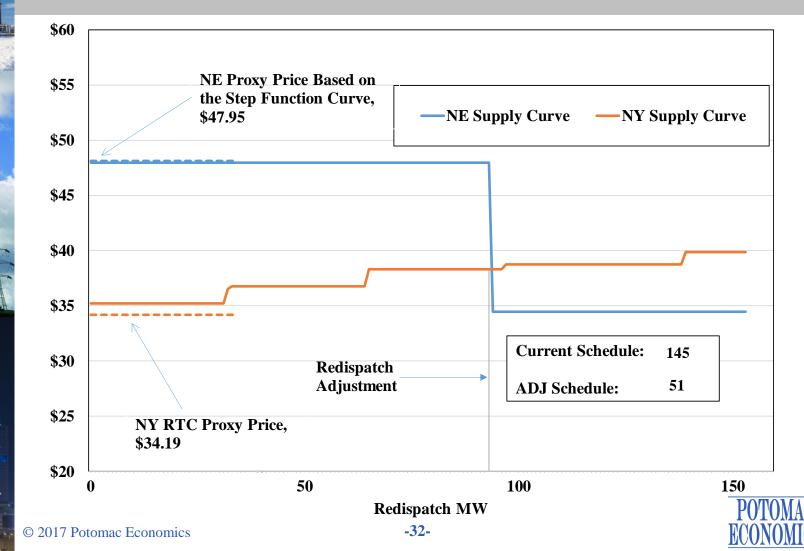

Simulation Examples

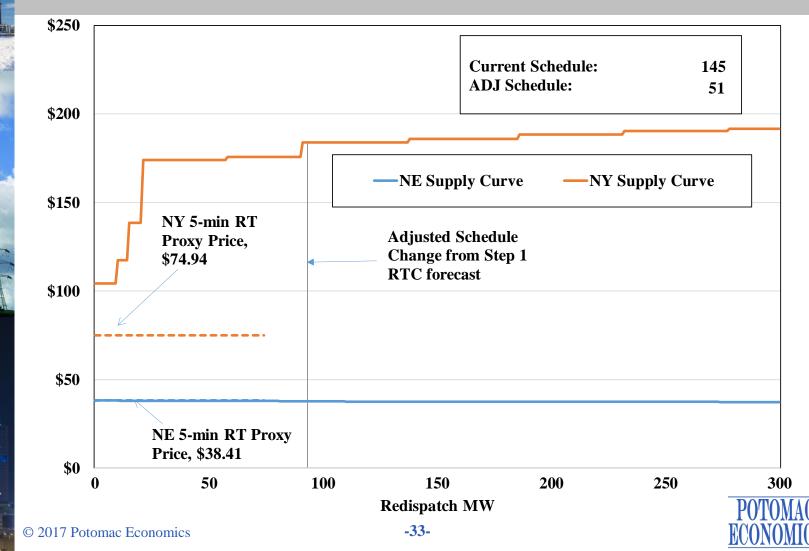
- This appendix provides two additional illustrative examples from our simulations:
 - Example 1: Both TO and OI adjust the interchange in the same direction, but TO under-adjusts (below the optimal level in OI).
 - Production cost savings are positive for TO but lower than for OI.
 - Example 2: TO and OI adjust the interchange in the opposite direction because of TO forecast in the opposite direction.
 - Production cost savings are negative for TO.




Example 1: Optimal Interchange Case June 1 at 15:20


Example 1: Tie Optimization Step 1 June 1 at 15:20


Example 1: Tie Optimization Step 2 June 1 at 15:20


Example 2: Optimal Interchange Case June 1 at 16:10

Example 2: Tie Optimization Step 1 June 1 at 16:10

Example 2: Tie Optimization Step 2 June 1 at 16:10

